
Plat_Forms 2011 Task: CaP

Ulrich Stärk, ulrich.staerk@fu-berlin.de
Lutz Prechelt, prechelt@inf.fu-berlin.de

Institut für Informatik
Freie Universität Berlin

Berlin, Germany
http://www.inf.fu-berlin.de/w/SE/

January 2011

Abstract

This document contains the requirements for the system to be built by the participants of the Plat_Forms
2011 contest. The system is called Conferences and Participants (CaP). It is to be written within two
days by a team of three people. For further details about the contest, please see www.plat-forms.org.

http://www.plat-forms.org


Contents

1 Introduction 4
1.1 Theme/purpose of the CaP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Requirements priorities and notation . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Functional requirements: Use Cases 5
2.1 User actions overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 User browses portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 User searches for conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 User registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 User creates a conference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 User works with Conference Summary . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Member works with Search For Members . . . . . . . . . . . . . . . . . . . . . . . 11
2.7.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Member works with Status Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Member administers the portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9.1 Main scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9.2 Exceptions and variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Functional requirements: Web Service interface 15

2



Contents

3.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Data objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.1 The conference object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 The category object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 The series object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4 The member object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 URL /conferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 URL /members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 URL /categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 URL /series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.8 URL /conferencesbycategory . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 URL /search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 URL /reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 URL /factorydefaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Glossary 24

5 Non-functional requirements 25
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Browser compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Scalability and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.5 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Session timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.7 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.8 Programming style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Rules for development 27
6.1 What is allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 What is not allowed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 User feedback: The blog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3.1 How to post a message in the blog . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Talking to the customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3



1 Introduction

1.1 Theme/purpose of the CaP

Conferences and Participants (CaP) is a simple portal for organizing and searching for conferences
of different kinds: organizers create conferences in certain categories, add details like venue and
acommodation and invite participants. Interested users can browse categories, search for conferences,
register for a conference and create personal calendars for conferences they are interested in.

The system has both an interactive user interface via HTML pages and a RESTful programmatic
interface.

You will be provided with a file called data.txt containing sample data which you can use during
development. See 3.3 and 3.10.

1.2 Requirements priorities and notation

The requirements described in this document are categorized into three different priority levels and
each requirement is marked accordingly:

MUST marks an essential requirement. Unless all of these requirements are implemented, the systemMUST
is considered inacceptable.

SHOULD marks an important requirement. If some of these requirements are not implemented, theSHOULD
system is considered incomplete, but acceptable.

MAY marks an optional requirement. These requirements are considered nice-to-have but need notMAY
be implemented when time is short or if their cost-benefit ratio is considered too high.

Each requirement is marked by exactly one of these three terms, followed by a subscript number that
is the unique reference number of that requirement (also repeated in the margin).

If a compound requirement (such as a use case) is marked MUST, that means at least the MUST
requirements contained in it must be realized. It does not mean that all of its subrequirements must be
realized.

If a compound requirement is marked SHOULD or MAY, it will be considered realized only if all of
the MUST requirements contained in it are realized.

If you make tradeoffs among requirements, maximize the user value of the portal, rather than showing
off your technical capabilities.

Phrases in italics in the use cases below are references to further use cases, the corresponding section
number is appended in parentheses as a hyperlink.

4



2 Functional requirements: Use Cases

Each use case consists of three subsections: The mandatory main scenario section describes the stan-
dard sequence of events for the use case. The optional exceptions and variants section describes what
happens in important error cases and which voluntary deviations from the main scenario should be
considered. The optional notes section provides detail information where needed.

2.1 User actions overview

2.1.1 Main scenario

MUST1 M 1

1. The user browses (2.2) the portal.

2. The user searches for conferences (2.3).

3. The user registers (2.4) to become a member.

4. The portal greets the new member with a few member statistics (MAY2) and a list of things to m 2

do (SHOULD3), in particular creating a new conference. S 3

5. The member creates a conference (2.5).

6. The member administers the portal (2.9).

7. The member logs out (MUST4). M 4

2.1.2 Exceptions and variants

• 3b. The member logs in (MUST5). M 5

• 4b. The portal greets an existing member with a list of notifications, specifically RCDs and
conference invitations (MAY6, see 2.8). m 6

2.1.3 Notes

• Request for Contact Details (RCD): From the point of view of member A, another member RCD
B can be in four different states: no_contact (the initial state) means no RCD has been sent
between the two, RCD_sent means A has made an RCD to B, RCD_received means B has
made an RCD to A, and in_contact means each has made an RCD to the other and both can
see the other’s contact details (full name and email address) which are normally hidden. Send-
ing an RCD happens in the no_contact and RCD_received state only, the latter case is called
”answering an RCD”. A positive answer leads to the in_contact state, a negative answer to the
no_contact state.

5



2 Functional requirements: Use Cases

2.2 User browses portal

2.2.1 Main scenario

MUST7M 7

1. On the portal’s main page, the user is presented with a list of categories (see category in the glos-
sary, MUST8) and a list of conferences (MUST9). In addition to the generic list of conferences,M 8

M 9 the portal SHOULD10 display a list of currently running conferences, a list of conferences start-
S 10 ing the next day (MAY11) and a list of conferences starting within the next week (MAY12).
m 11
m 12 2. The user selects a category.

3. The portal updates the page’s content to show the subcategories of the selected category (MUST13)M 13
and updates the lists of conferences to only show those belonging to the selected category or
one of its subcategories (MUST14).M 14

4. The user adds a conference to his default personal calendar (SHOULD15, see 2.8).S 15

5. The member calls the Conference Summary (2.6) of any of the conferences from the lists.

6. The portal navigates to the Conference Summary (2.6) of the selected conference (MUST16).M 16

2.2.2 Exceptions and variants

• 1b. Long lists (more than 10/25/50 entries, MAY17 be configurable) MAY18 be paginated.m 17
m 18

2.3 User searches for conferences

2.3.1 Main scenario

MUST19M 19

1. The portal presents a search dialog with the following filtering choices:

• choose one or more categories (category in the glossary, MUST20)M 20

• only conferences within a specified time range (MUST21)M 21

• whether or not to also search in subcategories (SHOULD22)S 22

• only conferences in my country (MAY23)m 23

• only conferences within a 50/500/2000/5000 kilometers radius of my location (SHOULD24)S 24

2. The user enters an optional search term (see Notes), selects some choices and submits the
search.

3. The portal finds all conferences that satisfy the given query and presents them as a list.

6



2.3 User searches for conferences

2.3.2 Exceptions and variants

• 1b. The user chooses the start and end dates from a pop-up calendar (MAY25). m 25

• 2b. instead of using the UI, the user makes his filtering choices using a special query syntax
(MUST26, see notes below). M 26

2.3.3 Notes

• Filtering choices that can’t be applied due to missing data (e.g. missing GPS coordinates for
the current user or user is not logged in) SHOULD27 be disabled. S 27

• By default, the portal SHOULD28 not search in subcategories. S 28

• The search term MUST29 be searched for in the name and description of a conference. Multiple M 29
search terms separated by a space are combined with a logical AND, meaning that all terms
must be present in the result.

• When specifying a time range, conferences running at the specified start and end dates MUST30 M 30
be returned (i.e. conference end date <= start date of time range and conference start date >=
end date of time range).

• If no time range is specified, only running conferences or conferences starting later than the
current date SHOULD31 be returned. S 31

• The query syntax is roughly defined by the following rules whose syntax borrows from EBNF
(Extended Backus-Naur Form) and regular expressions. See also the examples below.

querySyntax = queryExpression* (" " queryExpression)*
queryExpression = categoryModifier | dateModifier | optionExpression |
regionModifier | queryTerm
dateModifier = from | until | from until MAY32 m 32

from = "from:" date
until = "until:" date
optionExpression = optionPrefix option SHOULD33 S 33
optionPrefix = "opt:"
option = "withsub"
categoryModifier = categoryPrefix category MUST34 M 34
categoryPrefix = "cat:"
regionModifier = regionPrefix region MAY35 m 35

regionPrefix = "reg:"
region = "country" | \d+
category = [\w\d]+
queryTerm = [\w\d]+ MUST36 M 36
date = \d{8}

In the case of the date term, the portal MAY37 accept different ways of specifying the date in m 37

addition to the number-only format, e.g. 2011/01/18, 18.01.2011 and 2011-1-18. Whitespace
inside date strings is not allowed.

7



2 Functional requirements: Use Cases

A valid query may be cat:technology opt:withsub from:20110118 javaone and would return all
conferences in the technology category and all its subcategories starting on January 18th, 2011
or later that match the query term javaone. Other examples are

– cat:science software engineering, which finds science conferences containing software
engineering in their name or description

– reg:50 programming, which searches for conferences containing programming in their
name or description within a 50 kilometers radius around the user’s location

– cat:medicine reg:country, which finds all conferences from the medicine category in the
user’s country currently running or starting in the future

2.4 User registers

2.4.1 Main scenario

MUST38M 38

Precondition: User is not logged in

1. The user enters the following mandatory information (see the notes):
— full name, email address (MUST39)M 39
— town, country (MUST40)M 40
— username, password (MUST41)M 41

2. The user enters the following optional information (see the notes):
— GPS coordinates of place of residence (SHOULD42)S 42

3. The user submits this data for registration.

4. The portal validates the username, registers the user as a new member, stores the data, and logs
in the member (MUST43).M 43

2.4.2 Exceptions and variants

• 2b. The user can also add this information later using the Status Page.

• 2c. The portal MAY44 use the W3C Geolocation API to detect the user’s location, using eitherm 44

the browser’s native Geolocation API support or through Google Gears.

• 4b. The portal rejects the username because it is not unique (already in use) and sends the user
back to step 1 (MUST45). This MAY46 be done without the need for a full page refresh, usingM 45

m 46 Ajax.

• 4c. The portal MAY47 validate the email address by sending an activation token to the specifiedm 47

address (see 5.7.

• 4d. The portal MAY48 validate the email address to have a valid domain. This MAY49 be donem 48
m 49 using Ajax.

8



2.5 User creates a conference

2.4.3 Notes

Steps 1 and 2 should be considered a whole and can be distributed over one or several dialog pages
according to the chosen UI philosophy.

Full name and email address are initially hidden from view for other members. Members can make
them visible on a one-to-one basis by the RCD mechanism described in 2.8. All other data (except
the password) is considered public. See omit member details in the glossary. GPS

GPS coordinate format: GPS coordinates are entered textually in decimal notation. They MUST50 M 50
conform to the following regular expression: \d+(\.\d+)? ?[NnSs] ?,? ?\d+(\.\d+)? ?[EeWw]

Example GPS coordinates are 49.417716N,11.113712E.

GPS coordinate precision: The user can freely choose the precision of the GPS coordinates (number
of decimal places) and hence the precision with which the location is revealed.

GPS coordinate determination: The portal MAY51 provide an explanation how to determine one’s m 51

own GPS coordinates via Google Maps and its ”URL for this page” link.

2.5 User creates a conference

2.5.1 Main scenario

MUST52 M 52

Precondition: User (member) is registered and logged in.

1. The user enters the following mandatory information:
— Name of the conference (MUST53) M 53
— Date the conference starts (MUST54) M 54
— Date the conference ends (MUST55) M 55
— Categories for the conference (from a list of categories existing in the portal, see category in
the glossary, MUST56) M 56
— Description of the conference (MUST57) M 57
— Location of the conference (as an address, MUST58) M 58

2. The user enters the following optional information:
— GPS coordinates of the location (SHOULD59) S 59
— Information about the venue (MAY60) m 60

— Information about accomodation (MAY61) m 61

— How to find the location (MAY62) m 62

3. The user submits the data.

4. The portal validates the formats of the inputs, stores the data and redirects the user to the Con-
ference Summary (2.6) of the newly created conference (MUST63). M 63

9



2 Functional requirements: Use Cases

2.5.2 Exceptions and variants

• 1b. If the user is an official contact for a conference series, he MAY64 be able to choose am 64

conference series for the conference from a list of conference series he is the official contact for
(see conference series in the glossary).

• 1c. The user chooses the start and end dates from a pop-up calendar (MAY65).m 65

• 2b. The portal MAY66 use existing webservices like the Google Geocoding API to find them 66

location’s GPS coordinates based on the location’s address given in 1.

• 4b. The portal should accept different date formats and informs the user about the possible
formats (MAY67).m 67

2.6 User works with Conference Summary

2.6.1 Main scenario

MUST68M 68

Precondition: The user is logged in and has chosen a conference to display

1. The portal displays

• the information entered during the creation of the conference (MUST69, see 2.5).M 69

• the name and email address of the creator (MUST70)M 70

• a list of attendees with username, full name and email address (MUST71)M 71

2. The user downloads an iCalendar file with the information in 1 (MUST72). Information that hasM 72
no correspondence in the iCalendar format is ommitted.

3. The user downloads a PDF version of the information in 1 (SHOULD73).S 73

4. The user signs up for an RSS feed of the list of attendees (SHOULD74, see omit member detailsS 74
in the glossary).

5. The user signs up for the conference (MUST75).M 75

6. The user selects other users from a list of users with in_contact status and invites them to attend
(MUST76).M 76

7. The portal sends a notification to the invited user (MUST77).M 77

8. The user enters one or more email addresses of unregistered users to invite. An email with a
confirmation link is sent to the invitee (SHOULD78, see 5.7).S 78

2.6.2 Exceptions and variants

• 1b. If the user is the creator of the conference, he MUST79 be able to modify some or all of theM 79
information, including adding additional categories or modifying existing ones (see category in
the glossary, MUST80).M 80

10



2.7 Member works with Search For Members

• 1c. If the user modifies the start or end date of the conference, all attendees of the conference
SHOULD81 be notified. The nofication MAY82 include an updated iCalendar file. S 81

m 82• 1d. Instead of full name and email address of an attendee the username is shown unless the
user has in_contact status or is the creator of the conference (see omit member details in the
glossary, MUST83). M 83

• 1e. If an attendee was invited by email, a placeholder is shown instead of username and full
name (MUST84). M 84

• 2b. The user MAY85 choose whether to include the list of attendees in the generated iCalendar m 85

file.

• 3b. The user MAY86 choose whether to include the list of attendees in the generated PDF. m 86

• 5b. If the user already signed up for the conference, he can cancel his attendance (MUST87). M 87

• 5c. If the user is the creator of the conference, he MAY88 not be able to sign up. m 88

2.7 Member works with Search For Members

2.7.1 Main scenario

MUST89 M 89

Precondition: User (member) is registered and logged in.

1. The portal presents a search dialog with the following filtering choices (see notes for details):

2. Status-related choices:
— only members who are not yet contacts of mine (MAY90) m 90

— only members who have not yet received an RCD from me (MAY91) m 91

3. Location-related choices:
— only members in my town (MAY92) m 92

— only members in my country (MAY93) m 93

— only members who live less than 5/10/20/50/100/200/500/1000/2000/5000 kilometers away
(MAY94) m 94

4. The member enters an optional search term, selects some choices and submits the search
(MUST95). M 95

5. The portal finds all members that satisfy all of the filters and presents them as a list with the
following attributes: username, town and country (MUST96). M 96

6. The member selects some members whom he/she has not yet sent a Request For Contact Details
(RCD, MUST97, see 2.1.3) M 97

7. The portal sends an RCD to the selected members (MUST98). M 98

8. The member requests to see the Status Page (see 2.8) of one member from the list (MUST99). M 99

9. The portal shows the requested Status Page (2.8).

11



2 Functional requirements: Use Cases

2.7.2 Notes

x kilometers away: The comparison is performed based on the GPS coordinates alone. You needGPS
not implement spherical geometry computations, rather you MUST100 use the simple substitute asM 100
explained in the glossary. See distance calculation in the glossary.

GPS data precision: The low precision that some users may have chosen for their GPS coordinates is
ignored in the distance computation. All data is treated as if it was arbitrarily precise.

Choices that make no sense because of missing data (e.g. lack of GPS coordinates for the current
user) SHOULD101 be disabled.S 101

If a search term is entered, the username and full name fields are searched for members with in_contact
status. For all others only the username field is searched (MUST102).M 102

2.8 Member works with Status Page

2.8.1 Main scenario

MUST103M 103

Precondition: The user is logged in as member A

1. The Portal presents a status page about the member A that contains the following information:
— I: the set of information that is usually submitted on registration (MUST104, see 2.4)M 104
— M: a link to an external Google Maps page that will show a map (about 100 km across) of
the area around the member’s given GPS coordinates (MAY105)m 105

— N: a list of notifications (SHOULD106)S 106
— C: a list of members with in_contact status (MUST107)M 107
— S: a list of members with RCD_sent status (SHOULD108)S 108
— R: a list of members with RCD_received status (MUST109)M 109
— P: the user’s personal calendars (MUST110)M 110

2. The member reviews and modifies some or all of the information I (SHOULD111).S 111

3. The member reads and discards some or all of the notifications N (SHOULD112).S 112

4. The member acts on an invite notification (SHOULD113).S 113

5. The member selects some members from the RCD_received list and answers positively (MUST114).M 114

6. The portal updates the RCD_sent and in_contact lists (MUST115).M 115

7. The member selects some members from the RCD_received list and answers negatively (MUST116).M 116

8. The portal updates the RCD_sent list (MUST117).M 117

9. The member adds a personal calendar showing conferences within a specified category, includ-
ing subcategories (SHOULD118, see category in the glossary).S 118

10. The member adds a personal calendar showing conferences in his town/country (MAY119).m 119

11. The member adds a personal calendar showing conferences within a 50/500/2000/5000 kilome-
ter radius of his location (MAY120).m 120

12



2.9 Member administers the portal

12. The member suggests a new category (MAY121, see also 2.9). m 121

13. The member calls the Status Page of a member X from any of the lists C, S or R (MUST122). M 122

14. The portal presents the Status Page (2.8) of X.

2.8.2 Exceptions and variants

If the Status Page shown is not about member A, but rather about a different member B, the notifica-
tions list N, the member lists S and R and the personal calenders P are not shown and steps 2 to 11 are
not possible (MUST123). M 123

Unless B has in_contact status, the contact details (full name, email address) are also not shown
(MUST124). M 124

2.8.3 Notes

The lists MAY125 be sortable by any of the attributes. m 125

Long lists (more than 10/25/50 entries, MAY126 be configurable) MAY127 be paginated. m 126
m 127

Clicking on a user’s details in one of the lists MAY128 open that user’s Status Page. m 128

The member always has a default personal calendar. Additional personal calendars SHOULD129 have S 129
a user-configurable title.

Google Maps: Information about how to construct a suitable Google Maps URL can be found on the
web (but not at Google). The most relevant parameters are z and ll.

2.9 Member administers the portal

2.9.1 Main scenario

MUST130 M 130

Precondition: Member is logged in and has administrative rights

1. The administrator creates a new category, possibly as a subcategory of an existing one (see
category in the glossary, MUST131). M 131

2. The administrator creates a conference series (MAY132), supplying a mandatory name (MAY133), m 132
m 133an optional description (MAY134) and an optional URL where more information about the series
m 134can be found (MAY135). See conference series in the glossary.
m 135

3. The administrator makes a member the official contact of a conference series (MAY136). See m 136
conference series in the glossary.

4. The administrator grants administrative rights to a member (MAY137). m 137

5. The administrator removes a conference from a category (SHOULD138). S 138

6. The portal notifies the conference creator about the removal from a category (SHOULD139). S 139

13



2 Functional requirements: Use Cases

2.9.2 Exceptions and variants

• 1b. The administrator creates the category from a user suggestion (MAY140, see 2.8).m 140

• 3b. The administrator SHOULD141 be able to search the member by username, full name orS 141
email address.

• 4b. The administrator SHOULD142 be able to search the member by username, full name orS 142
email address.

2.9.3 Notes

The portal MUST143 have a default user with administrative rights with username admin and passwordM 143
admin.

14



3 Functional requirements: Web Service
interface

3.1 General information

You are required to write a RESTful web service interface for your solution using HTTP methods for
the operations and JSON (JavaScript Object Notation) for data transfer. The MIME type of the data
MUST144 be application/json. M 144

Your implementation of the service MUST145 be bound to the URL /ws on your server. M 145

With two single exceptions (reset, section 3.10 and factorydefaults, section 3.11), the operations in
the service follow the use cases described in Section 2 quite closely and represent most (but not all)
of their underlying business functionality.

Only those parts of the underlying functionality actually MUST146 be present that you have also im- M 146
plemented on the usecase level (that is, in the HTML user interface). Therefore, input parameters
that represent functionality you have not implemented on the usecase level MUST147 simply be ig- M 147
nored and output attributes that represent functionality you have not implemented on the usecase level
MUST148 simply be omitted. The reset and factorydefaults operations must be implenented in any M 148
case.

If you do not implement parts of the specification, your service MUST149 return a 501 Not Imple- M 149
mented HTTP status code for the respective resource and HTTP method. You MAY150 also return a m 150

405 Method Not Allowed for all other HTTP methods than those specified.

The subsequent descriptions of the individual operations can only be fully understood in conjunction
with the usecases in Section 2 (because those describe most of the semantics).

3.2 Authentication

Authentication MUST151 be done using HTTP Basic Access Authentication. Username and password M 151
are the same as given during user registration.

3.3 Data objects

Data transfer with the web service is done using JSON objects. The following subsections describe
these objects. Your implementation MUST152 follow the specification for these objects. M 152

In an array context or when referenced inside another object, the objects MUST153 be replaced by a M 153
stub object containing only the fields printed in bold and an additional field details of type string

15



3 Functional requirements: Web Service interface

which represents an URL where the full details for this object can be retrieved. E.g. [ { "username"
: "johndoe", "details" : "http://example.com/ws/members/johndoe" } ]

Sample data can be found in the file data.txt.

3.3.1 The conference object

See 2.5 for details of conference creation.

field type description
version string
id number
name string
creator object Reference to member object
series object Reference to series object
startdate string
enddate string
categories array A list of category objects
description string
location string
gps string GPS coordinates, follows format conventions as described in 2.4.3
venue string
accomodation string
howtofind string

3.3.2 The category object

See category in the glossary.

field type description
version string
id number
name string
parent object Reference to a parent category object
subcategories array A list of category objects

3.3.3 The series object

See conference series in the glossary.

field type description
version string
id number
name string
contacts array A list of member objects (official contacts)

16



3.4 URL /conferences

3.3.4 The member object

See 2.4 for details of user creation.

field type description
version string
id number
username string
password string
fullname string
email string
town string
country string
gps string GPS coordinates, follows format conventions as described in 2.4.3
status string RCD status (see 2.1.3)

3.4 URL /conferences

Allows the consumer to add and manipulate as well as retrieve information on conferences. The
following operations translate roughly to the use case described in 2.6.

(URL template) /

(HTTP method) POST
Create a new conference by submitting a conference object (MUST154). The version M 154
and id fields are ignored if set.

(Status) 200 OK
if the conference was created successfully. Return the conference object of the
newly created conference.

403 Forbidden
if the user tried to create a conference in a series where he is not the official contact.
See conference series in the glossary.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous conference object being
posted.

/{id}

GET
Get the conference with the given id (MUST155). M 155

200 OK
if the conference was found. Return the corresponding conference object.

404 Not Found
if no conference with the given id exists.

17



3 Functional requirements: Web Service interface

PUT
Update the specified conference by transferring an updated conference object (MUST156).M 156

200 OK
if the conference was updated successfully. Return the updated conference object.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous conference object being
posted.

403 Forbidden
if the user tried to tried to update the series to a series where he is not the official
contact. See conference series in the glossary.

404 Not Found
if no conference with the given id exists.

409 Conflict
if the object has been modified between a previous GET and the current PUT request.

/{id}/attendees

GET
list all conference attendees for the conference with the given id (MUST157).M 157

200 OK
return an array of member objects.

204 No Content
if the conference has no attendees.

404 Not Found
if no conference with the given id exists.

POST
Attend the conference with the given id by uploading a member object. All fields but the
username field MUST158 be ignored, i.e. also an object that only contains a usernameM 158
field must be accepted.

204 No Content
if the subscription was succesful.

403 Forbidden
if the user tried to make someone else but himself an attendee.

404 Not Found
if no conference with the given id exists.

/{id}/attendees/{username}

DELETE
cancel the attendance of the user identified by username (MUST159).M 159

204 No Content
if the attendance was succesfully cancelled.

18



3.5 URL /members

403 Forbidden
if the user tried to cancel the attendance of someone else but himself.

404 Not Found
if no conference with the given id exists.

3.5 URL /members

Allows the consumer to add and manipulate as well as retrieve information on members. The follow-
ing operations translate roughly to the use case described in 2.8.

/

POST
Register a new user by submitting a member object (MUST160). The version and id fields M 160
are ignored if set.

200 OK
if the user was registered successfully. Return the member object of the newly created
member.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous member object being posted
(e.g. duplicate username or other validity violations).

/{username}

GET
Retrieve information on the member identified by username (MUST161). M 161

200 OK
if the member exists. Return the requested member object. Unless the requesting user
has in_contact status with the requested user, the contact details (full name, email
address) MUST162 be ommitted. M 162

404 Not Found
if no member with the given username could be found.

PUT
Update the specified member by submitting an updated member object (MUST163). M 163

200 OK
if the member was updated successfully. Return the updated member object.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous member object.

403 Forbidden
if the user tried to update some other member but himself.

404 Not Found
if no user with the given username exists.

19



3 Functional requirements: Web Service interface

409 Conflict
if the object has been modified between a previous GET and the current PUT request.

/{username}/contacts

GET
List members with in_contact, RCD_sent or RCD_received status to username (MUST164).M 164
If the requesting user is not the member identified by username, only contacts with
in_contact status may be returned.

200 OK
if the member exists. Return an array of member objects.

204 No Content if the member has no contacts or pending RCDs.

404 Not Found
if no member with the given username could be found.

POST
Send an RCD (see 2.1.3) to the specified user (MUST165) by submitting a JSON ob-M 165
ject with a single field called positive. Sending and answering positively is the same:
positive is set to true. Answering negatively is done by setting positive to false. Neg-
atively answering to a member that had not send an RCD has no effect. Sending an RCD
to a member with in_contact status has no effect either.

204 OK
if the RCD was sent successfully.

400 Bad Request
if the request couldn’t be fulfilled due to erroneous data.

404 Not Found
if no user with the given username exists.

3.6 URL /categories

Allows the consumer to retrieve information on conference categories. Categories are used in multiple
use cases, see also category in the glossary.

/

GET
Retrieve a list of top-level categories (MUST166).M 166

200 OK
return an array with all top-level categories.

204 No Content
if no top-level categories exist.

20



3.7 URL /series

POST
Create a new category by submitting a category object (MUST167). The version, id and M 167
subcategories fields are ignored if set.

200 OK
if the category was created successfully. Return the category object of the newly
created category.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous category object being posted
(e.g. duplicate category).

403 Forbidden
if the user does not have administrative privileges.

/{id}

GET
Retrieve information about a category (MUST168). M 168

200 OK
return the category object for the category identified by id.

404 Not Found
if no category with the given id exists.

3.7 URL /series

Allows the consumer to retrieve information on conference series. Conference series are used in
multiple use cases, see also conference series in the glossary.

/

GET
Retrieve a list of conference series (MAY169). m 169

200 OK
return an array with all conference series.

204 No Content
if no conference series exist.

POST
Create a new series by submitting a series object (MAY170). The version and id fields m 170

are ignored if set.

200 OK
if the series was created successfully. Return the series object of the newly created
series.

400 Bad Request
if the request couldn’t be fulfilled due to an erroneous series object being posted.

21



3 Functional requirements: Web Service interface

403 Forbidden
if the user does not have administrative privileges.

/{id}

GET
Retrieve information about a conference series (MAY171).m 171

200 OK
return the series object for the conference series identified by id.

404 Not Found
if no conference series with the given id exists.

3.8 URL /conferencesbycategory

Allows the consumer to browse conferences by category. This roughly translates to the use case in
2.2. See also category in the glossary.

/{id}

GET
Retrieve conferences in a category (MUST172).M 172

200 OK
return an array of conferences within the category identified by id.

204 No Content
if there are no conferences in the given category.

404 Not Found
if no category with the given id exists.

3.9 URL /search

Allows the consumer to search for conferences. This corresponds to the use case in 2.3.

/{query}

GET
Search for conferences matching the specified query term (MUST173). The query termM 173
conforms to the same syntax as in the normal search (see 2.3). URL encoding must take
place where necessary.

200 OK
return an array of conferences.

204 No Content
if there are no conferences matching the query criteria.

22



3.10 URL /reset

400 Bad Request
if the query term is erroneous.

3.10 URL /reset

Allows an administrative user to reset the portal to its initial state.

/

GET
Reset the portal to its initial state (MUST174). No users (except the default administrative M 174
user) are registerd, no categories, conferences, conference series, etc. exist.

204 No Content
if the portal has been reset successfully.

403 Forbidden
if the user does not have administrative privileges.

3.11 URL /factorydefaults

Allows an administrative user to reset the portal to an initial state with initial data. A file with initial
sample data called data.txt is available.

/

GET
Reset the portal to its initial state. It MUST175 contain all the data as given in the sample M 175
data file data.txt.

204 No Content
if the portal has been reset successfully.

403 Forbidden
if the user does not have administrative privileges.

23



4 Glossary

category A category groups an arbitrary set of conferences and possibly sub-categories by any cri-
terion and for any purpose. Used on pages 6, 6, 9, 10, 12, 13, 16, 20, 22.

conference series A series groups a sequence of multiple instances of the same conference that oc-
cur over time. Usually all conferences within one series are organized by the same organization.
Only an official contact user may create a conference in that series. Used on pages 10, 13, 13,
16, 17, 18, 21.

distance calculation with a longitude difference of x and a latitude difference of y, the distance d is
d =

√
x2 + y2, where the unit of d is 100 kilometers. If you make sure you choose the shortest

way, this is correct with respect to latitude differences and tends to overestimate longitude
differences (except near the equator, where it underestimates, since 40,000/360 ≈ 111). Used
on pages 12.

omit member details If a member A has not the in_contact status with member B, member A may
only see part of B’s details for privacy reasons. These details are username, town and country.
Full name, email address, password and GPS coordinates may not be revealed. Used on pages
9, 10, 11.

24



5 Non-functional requirements

5.1 General

Passwords MUST176 not be disclosed to anyone, neither on the UI nor on the web service level. See M 176
also omit member details in the glossary

For the web service, only those operations MUST177 require authentication that also require an au- M 177
thentiaced user on the UI level.

5.2 User interface

The user interface MUST178 conform to the above-mentioned requirements (as far as they are realized M 178
at all) in a sensible way with respect to the arrangement and markup of its elements and the labels,
prompts and explanations that guide the user. Within those limits, the organization and design of the
interface is left to the professional judgement of the participants.

The userinterface SHOULD179 provide sufficient explanation of all uncommon concepts to guide a S 179
user who does not have prior knowledge about these topics. Make use of external links where needed.
Do not include copyrighted material without permission.

Elaborate graphical design (MAY180) is not important, but CSS SHOULD181 be used throughout to m 180

S 181simplify future improvements.

It would be nice if the user interface works even when Javascript is turned off in a user’s browser
(MAY182). m 182

5.3 Browser compatibility

The portal MUST183 work fully with Firefox 3.0 and higher. M 183

The portal MUST184 work fully with Internet Explorer 7 and higher. M 184

The portal SHOULD185 work fully with Internet Explorer 6. S 185

The portal SHOULD186 work fully with Chrome 7 and higher. S 186

The portal SHOULD187 work fully with Safari 4 and higher. S 187

The portal SHOULD188 work fully with Opera 9 and higher. S 188

The portal MAY189 work fully with other browsers such as Konqueror, Opera Mini, Lynx etc. m 189

If the portal relies on Javascript in the browser and Javascript is unavailable, it MUST190 either pro- M 190
duce a clear message saying that the portal is not functional (and why) or fall back to reduced (but
still useful) functionality.

25



5 Non-functional requirements

5.4 Scalability and efficiency

The system MUST191 scale without problems to 1,000,000 registered members, 100,000 conferences,M 191
5,000 categories, and 5,000 series.

It MUST192 run efficiently throughout all of its functionality; no function must be implemented in anM 192
avoidably inefficient manner.

5.5 Persistence

All information (registration, conference, category, series, RCD status, . . . ) MUST193 be stored inM 193
persistent storage and must survive system shutdowns and crashes intact.

5.6 Session timeout

Login sessions MUST194 time out after one hour.M 194

5.7 Integration

If your CaP implementation needs to send out an email, you MUST195 use the server smtp.plat-forms.orgM 195
for that purpose. It works without encryption and without authentication. Where calls to other services
are required, they are performed by the user’s browser by following a URL supplied by the system.
Where calls from other systems are required, they are the other system’s responsibility and have to be
performed via the web service interface.

5.8 Programming style

All identifiers and comments in the source code and helper files MUST196 be in English.M 196

Each source code file MUST197 be documented at least globally (i.e. in its head) and shortly explainM 197
its purpose and which other parts of the system use its functionality.

Each non-trivial public program element (such as a method) MAY198 be documented (purpose, usage).m 198

26



6 Rules for development

6.1 What is allowed

During the contest you may:

• Use any language, tool, middleware, library, framework, and other software you find helpful.

• Reuse any piece of any pre-existing application or any other helpful information you have your-
self or can find on the web yourself. Anything that already existed the day before the contest
started is acceptable.

• Use any development process you deem useful.

• Ask the organizer (who is acting like a customer) any question you like regarding the require-
ments and priorities (see 6.4).

6.2 What is not allowed

During the contest you may not:

• Disturb other teams in their work.

• Send contest-related email to people not on your team or transfer the requirements description
(or parts thereof) to people not on your team.

• Have people from outside of your team help you. (This includes reusing work products from
other teams.) There are two exceptions to this rule: (1) you may use answers of the customer
as described in Section 6.4 and (2) you may use user-level preview feedback as described in
Section 6.3.

6.3 User feedback: The blog

During the contest, teams SHOULD199 showcase intermediate versions of their CaP service to obtain S 199
user-level comments and feedback. To do this, host your CaP service on your development server,
open it for public access, and post a notification in the Live Contest Blog as described below.

Users can then comment on your CaP prototype regarding functionality, defects, usability etc. The
teams are allowed to use this user-level feedback for improving their system. They are not allowed to
post source code or to use information from outsiders that is on the code level.

27



6 Rules for development

6.3.1 How to post a message in the blog

Log in on plat-forms.org. Your username (teama, teamb etc.) and password (a 5-digit number) for the
blog is available from Lutz Prechelt or Ulrich Stärk.

Go to Blog.

Middle column: Click ”Create new blog entry.” above the latest blog post

Fill the ”Title” field. Mention the names of your home organization, platform, and the version number
of your new prototype, say, ”O’Reilly Perl team: Version 6”.

Fill the ”Body” section. Indicate for which aspects you are particularly interested to receive feedback
and perhaps what people should expect from your prototype. Most importantly, provide the URL
where to access your prototype.

If you want to provide longer explanations (more than 600 characters), your post will be trimmed and
the rest will be hidden behind a ”read more...” link. You can affect the place where the cut will be
made by putting the HTML comment <!--break--> at the desired position. For this purpose, press
the ”Source” button in the upper right corner of the WYSIWYG editor’s menu in order to modify the
HTML source manually.

Store your data by clicking ”Save”. Your post will be published immediately.

If necessary, you can still modify your entry by navigating to it and clicking ”Edit”. Afterwards
”Save” as before.

During the contest, all visitors of www.plat-forms.org can leave a comment on the entry.

6.4 Talking to the customer

The customer of the CaP project is represented by Ulrich Stärk. He will be more or less available for
questions regarding the requirements during most of the day and evening. He will not be available
between midnight and 8:00 in the morning.

He will happily answer questions regarding clarification of the meaning of requirements (but beware:
if his advice and this document should ever be in conflict, it is this document that is relevant for the
evaluation, not his advice). He will only vaguely answer questions regarding requirements priorities
or regarding which of two concrete solution ideas he would prefer and will point you to this document
instead. He will not look at your solutions or give concrete feedback about them.

6.5 Delivery

You are allowed to finish your development at any time you think appropriate, but no later than the end
of the contest at 18:00 on 2011-01-19. Early delivery will be taken into account during the evaluation.

Package and submit your deliverables as follows:

1. Create a file named adminuser.txt containing two lines: the first line must be the login name
of a user with unlimitied administrative rights for your virtual machine’s operating system, the
second line must be that user’s password. We MUST200 be able to log in to your virtual machineM 200
using those credentials.

28

http://www.plat-forms.org
http://www.plat-forms.org/blog


6.5 Delivery

2. Shut down the virtual machine that is running your CaP service. Put all files that make up the
virtual machine and the adminuser.txt file into a ZIP file called vmware.zip. The virtual
machine MUST201 be set up in such a way that your CaP automatically starts up when the M 201
machine is booted and that your CaP does not need manual shutdown when the machine is
shutdown. (The machine will always get at least 10 seconds of idle time before shutdown.)

3. Package a snapshort of your versioning database into a ZIP file. The versioning database is the
subtree in file system of your versioning server that contains the directories and files holding
all versions of each file of your CaP project you have under version control. If you used CVS
as your versioning system, call the ZIP file cvs.zip; if you used Subversion, call the ZIP file
svn.zip; etc.

4. Create a source code distribution of your CaP implementation and package it in a ZIP file called
CaP-sources.zip. This distribution should contain all files needed to recreate an instance of
your CaP service except those that already existed before the contest and were not modified.
So you should include all source code, build files, skripts, configuration files, documentation,
etc, if they are new or were modified. You need not include pre-existing infrastructure such
as application server, database server, compiler, libraries, unmodified parts of frameworks etc.
The content of this ZIP file wil be considered published under the OpenSource license(s) you
specified when you requested participation in the contest.

5. Create a ZIP file named like <homeorganization>-<platformname>.zip, e.g. Kayak-java.zip.
This ZIP file contains the three other ZIP files mentioned above and is your deliverable (MUST202). M 202

6. Determine the 160-bit SHA-1 message digest checksum of the deliverable. We will call this
checksum the ”fingerprint” of the deliverable. SHA-1 is computed for instance by the sha1sum
utility from GNU coreutils.

7. Send a two-line email containing the name of the deliverable and the fingerprint to organizers@plat-
forms.org. The reception time timestamp of this email will be your submission time and
MUST203 be before the end of the contest. Use the name of the deliverable as the subject M 203
of the email. The organizers will ignore all but the last such email from each team.

8. Fill in the 12 questions in the file postmortem-questionnaire.rtf. We need a separate question-
naire from each member of your team. Since you may not have enough energy left to provide
sensible answers today, you need not do this right now; it is OK if you send the filled-in ques-
tionnaire at any time until Friday next week (2010-01-28). However, the information you give
us in the questionnaire is important input for the scientific evaluation, so we kindly ask that
each team member thoroughly provides his/her own personal answers. Please send the result to
organizers@plat-forms.org. Thanks!

9. Create a medium containing the deliverable. Write the name of the deliverable and the time
of day on it with a pen. Hand the medium over to the customer (Ulrich Stärk). YOU ARE

DONE. Come to our get-together, go and sleep or party or bang your head against a soft wall —
whatever you feel most like doing. Thank you veeery much for participating in Plat_Forms!

The fingerprint sent in your email absolutely MUST204 match that of the ZIP file on the medium M 204
or else your whole participation was in vain. The fingerprint email has two purposes: (1) to
make the submission timestamp independent of your medium-creation progress and (2) to validate
the medium, in particular a replacement medium should the original one turn out to be unreadable.

29


	Introduction
	Theme/purpose of the CaP
	Requirements priorities and notation

	Functional requirements: Use Cases
	User actions overview
	Main scenario 
	Exceptions and variants
	Notes

	User browses portal
	Main scenario
	Exceptions and variants

	User searches for conferences
	Main scenario
	Exceptions and variants
	Notes

	User registers
	Main scenario 
	Exceptions and variants
	Notes

	User creates a conference
	Main scenario
	Exceptions and variants

	User works with Conference Summary
	Main scenario
	Exceptions and variants

	Member works with Search For Members
	Main scenario 
	Notes

	Member works with Status Page
	Main scenario 
	Exceptions and variants
	Notes

	Member administers the portal
	Main scenario
	Exceptions and variants
	Notes


	Functional requirements: Web Service interface
	General information
	Authentication
	Data objects
	The conference object
	The category object
	The series object
	The member object

	URL /conferences
	URL /members
	URL /categories
	URL /series
	URL /conferencesbycategory
	URL /search
	URL /reset
	URL /factorydefaults

	Glossary
	Non-functional requirements
	General
	User interface
	Browser compatibility
	Scalability and efficiency
	Persistence
	Session timeout
	Integration
	Programming style

	Rules for development
	What is allowed
	What is not allowed
	User feedback: The blog
	How to post a message in the blog

	Talking to the customer
	Delivery


